On the Decrease of a Quadratic Function along the Projected-gradient Path
نویسنده
چکیده
The Euclidean gradient projection is an efficient tool for the expansion of an active set in the activeset-based algorithms for the solution of bound-constrained quadratic programming problems. In this paper we examine the decrease of the convex cost function along the projected-gradient path and extend the earlier estimate given by Joachim Schöberl. The result is an important ingredient in the development of optimal algorithms for the solution of convex quadratic programming problems.
منابع مشابه
A path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملContinuous Steepest Descent Path for Traversing Non-convex Regions
This paper revisits the ideas of seeking unconstrained minima by following a continuous steepest descent path (CSDP). We are especially interested in the merits of such an approach in regions where the objective function is non-convex and Newton-like methods become ineffective. The paper combines ODE-trajectory following with trust-region ideas to give an algorithm which performs curvilinear se...
متن کاملA New Mathematical Approach based on Conic Quadratic Programming for the Stochastic Time-Cost Tradeoff Problem in Project Management
In this paper, we consider a stochastic Time-Cost Tradeoff Problem (TCTP) in PERT networks for project management, in which all activities are subjected to a linear cost function and assumed to be exponentially distributed. The aim of this problem is to maximize the project completion probability with a pre-known deadline to a predefined probability such that the required additional cost is min...
متن کاملSpectral Projected Gradient Method for the Procrustes Problem
We study and analyze a nonmonotone globally convergent method for minimization on closed sets. This method is based on the ideas from trust-region and Levenberg-Marquardt methods. Thus, the subproblems consists in minimizing a quadratic model of the objective function subject to a given constraint set. We incorporate concepts of bidiagonalization and calculation of the SVD “with inaccuracy” to ...
متن کاملQuadratic regularization projected alternating Barzilai–Borwein method for constrained optimization
In this paper, based on the regularization techniques and projected gradient strategies, we present a quadratic regularization projected alternating Barzilai–Borwein (QRPABB) method for minimizing differentiable functions on closed convex sets. We show the convergence of the QRPABB method to a constrained stationary point for a nonmonotone line search. When the objective function is convex, we ...
متن کامل